top of page
ScrippsResearch-LinkedIn-Background_15-5000x1251-9a6bdedf-d3d7-4375-9d2e-cfe4e617f3d3_edit

Latest Research Publications

Stay updated with our latest research findings and scientific contributions. Explore the papers authored by our lab members and collaborators, and delve into the exciting world of molecular and cellular biology.

99. Understanding the Glycosylation Pathways Involved in the Biosynthesis of the Sulfated Glycan Ligands for Siglecs. Jung, J.; Schmidt, E. N.; Chang, H.-C.; Jame-Chenarboo, Z.; Enterina, J. R.; McCord, K. A.; Gray, T. E.; Kageler, L.; St. Laurent, C. D.; Wang, C.; Flynn, R. A.; Wu, P.; Khoo, K-H.; Macauley, M. S. ACS Chemical Biology 2025. https://doi.org/10.1021/acschembio.4c00677

​

98. Enforced E-selectin ligand installation enhances homing and efficacy of adoptively transferred T cells. Hou, Y.; Ye, J.; Qin, K.; Cui, L. A.; Chung, S.; Chapla, D. G.; Wang, W.; Shi, Y.; Chen, M.; Moremen, K. W.; Sackstein, R.; Wu, P. bioRxiv 2025. https://doi.org/10.1101/2025.01.12.632650

​

97. Reshaping the tumor microenvironment by degrading glycoimmune checkpoints Siglec-7 and -9. Wang, C.; Hou, Y.; Zak, J.; Zheng, Q.; McCord, K. A.; Wu, M.; Zhang, D.; Chung, S.; Shi, Y.; Ye, J.; Zhao, Y.; Hajjar, S.; Wilson, I. A.; Paulson, J. C.; Teijaro, J. R.; Zhou, X.; Sharpless, K. B.; Macauley, M. S.; Wu, P. bioRxiv 2024. Epub 20241012. https://doi.org/10.1101/2024.10.11.617879

 

96. A Vascular-associated Fibroblastic Cell Controls Pancreatic Islet Immunity. Clarke, D.; Costanzo, A.; Sharma, S.; Moremen, K.; Pettus, J. Domissy, A.; Wu, P.; Teyton, L. Submitted. 

 

95. Transient EZH2 suppression by Tazemetostat during in vitro expansion maintains T cell stemness and improves adoptive T cell therapy. Hou, Y.;  Zak, J.;  Shi, Y.;  Pratumchai, I.;  Dinner, B.;  Wang, W.;  Qin, K.;  Weber, E.;  Teijaro, J. R.; Wu, P. Cancer Immunol. Res. 2024. https://doi.org/10.1158/2326-6066.Cir-24-0089

​

94. Glycoengineering in Antigen-Specific Immunotherapies. Li, Y.;  Chen, H.;  Gao, J.;  Wu, P.; Hong, S. Curr. Opin. Chem. Biol. 2024, 81, 102503. https://doi.org/10.1016/j.cbpa.2024.102503

​

93. Peptide-Driven Proton Sponge Nano-Assembly for Imaging and Triggering Lysosome-Regulated Immunogenic Cancer Cell Death. He, T.;  Wen, J.;  Wang, W.;  Hu, Z.;  Ling, C.;  Zhao, Z.;  Cheng, Y.;  Chang, Y. C.;  Xu, M.;  Jin, Z.;  Amer, L.;  Sasi, L.;  Fu, L.;  Steinmetz, N. F.;  Rana, T. M.;  Wu, P.; Jokerst, J. V. Adv. Mater. 2024, 36 (19), e2307679. https://doi.org/10.1002/adma.202307679

​

92. Enzyme-Sialylation-Controlled Chemical Sulfation of Glycan Epitopes for Decoding the Binding of Siglec Ligands. Ma, S.;  Zhang, P.;  Ye, J.;  Tian, Y.;  Tian, X.;  Jung, J.;  Macauley, M. S.;  Zhang, J.*;  Wu, P.*; Wen, L.* J. Am. Chem. Soc. 2024, 146 (43), 29469-29480. (*co-corresponding authors). https://doi.org/10.1021/jacs.4c08817

 

91. Machine Learning-Accelerated Discovery of Heat-Resistant Polysulfates for Electrostatic Energy Storage. Li, H.;  Zheng, H.;  Yue, T.;  Xie, Z.;  Yu, S.;  Zhou, J.;  Kapri, T.;  Wang, Y.;  Cao, Z.;  Zhao, H.;  Kemelbay, A.;  He, J.;  Zhang, G.;  Pieters, P. F.;  Dailing, E. A.;  Cappiello, J. R.;  Salmeron, M.;  Gu, X.;  Xu, T.;  Wu, P.;  Li, Y.;  Sharpless, K. B.; Liu, Y. Nat. Energy 2024. https://doi.org/10.1038/s41560-024-01670-z

 

90. Targeted Desialyation and Cytolysis of Tumour Cells by Fusing a Sialidase to a Bispecific T-Cell Engager. Yang, Z.; Hou, Y.; Grande, G.; Cho, J. H.; Wang, C.; Shi, Y,; Wan, Y.; Qin, K.; Liu, D.; Teijaro, J. R.; Lerner, R. A.,; Wu, P.  Nat. Biomed. Eng. 2024. https://doi.org/10.1038/s41551-024-01202-w

 

89. Chemical immunology: Recent advances in tool development and applications. Shi, Y.; Bashian, E.E.; Hou, Y.; Wu, P. Cell Chem. Biol. 2024, 31, 387. https://doi.org/10.1016/j.chembiol.2024.02.006

 

88. Dissecting the Ability of Siglecs To Antagonize Fcγ Receptors. McCord, K. A.; Wang, C.; Anhalt, M.; Poon, W. W.; Gavin, A. L.; Wu, P.; Macauley, M. S. ACS Cent. Sci. 2024, 10.1021/acscentsci.3c00969. 

https://doi.org/10.1021/acscentsci.3c00969

 

87. Chemoenzymatic Tagging of Tn/TF/STF Antigens in Living Systems. Yang, Y.; Chen, M.; Wu, M.; Hong, S.; Gao, B.; Liu, Y.; Yu, C.; Young, T. S.; Chapla, D. G.; Yang, J.-Y.; Cappiello, J.R.; Li, J.P.; Sharpless; K.B.; Moremen, K.W.; Wu, P. Isr. J. Chem. 2023, 63, e202300081. https://doi.org/10.1002/ijch.202300081

 

86. Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays. Lin, C.-L.; Sojitra, M.; Carpenter, E. J.; Hayhoe, E. S.; Sarkar, S.; Volker, E. A.; Wang, C.; Bui, D. T.; Yang, L.; Klassen, J. S.; Wu, P.; Macauley, M. S.; Lowary, T.L.; Derda, R. Nat. Commun. 2023, 14, 5237. https://doi.org/10.1038/s41467-023-40900-y

 

85. Chemoenzymatic Measurement of LacNAc in Single-Cell Multiomics Reveals It as a Cell-Surface Indicator of Glycolytic Activity of CD8+ T Cells. Yu, W.; Zhao, X.; Jalloh, A. S.; Li, Y.; Zhao, Y.; Dinner, B.; Yang, Y.; Ouyang, S.; Tian, T.; Zhao, Z.; Yang, R.; Chen, M.; Lauvau, G.; Guo, Z.*; Wu, P.*; Li, J.P.* J. Am. Chem. Soc. 2023, 145, 12701. (*co-corresponding authors). https://doi.org/10.1021/jacs.3c02

 

84. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions.Li, H.; Chang B.S.; Kim, H.; Xie, Z.; Laine, A.; Ma, L.; Xu, T.; Yang, C.; Kwon, J.; Shelton, S.W.; Klivansky, L.M.; Altoe, V.; Gao, B.; Schwartzberg, A.M.; Peng, Z.; Ritchie, R.O.; Xu, T.; Salmeron, M.; Ruiz, R.; Sharpless, K.B.; Wu, P.; Liu, Y. Joule 2023, 7, 95.

https://doi.org/10.1016/j.joule.2022.12.010

 

83. Switchable targeting of solid tumors by BsCAR T cells. Stepanov, A.V.; Kalinin, R.S,.; Shipunova, V.O.; Zhang, D.; Xie, J.; Rubtsov, Y.P.; Ukrainskaya, V.M.; Schulga, A.; Konovalova, E.V.; Volkov, D.V.; Yaroshevich, I.A.; Moysenovich, A.M.; Belogurov, A.A., Jr.; Zhang, H.; Telegin, G.B.; Chernov, A.S.; Maschan, M.A.; Terekhov, S.S.; Wu, P.; Deyev, S.M.; Lerner, R.A.; Gabibov, A.G.; Altman, S. Proc Natl Acad Sci U S A. 2022, 46, 119. https://doi.org/10.1073/pnas.2210562119

 

82. The Nobel Prize in Chemistry 2022: Fulfilling Demanding Applications with Simple Reactions. Wu, P.* ACS Chem Biol. 2022, 17, 2959. https://doi.org/10.1021/acschembio.2c00788

 

81. Use of Intercellular Proximity Labeling to Quantify and Decipher Cell-cell Interactions Directed by Diversified Molecular Pairs. Qiu, S.; Zhao, Z.; Wu, M.; Xue, Q.; Yang, Y.; Ouyang, S.; Wang, W.; Yang, R.; Wu, P.*; Li, J. P.* Sci. Adv. 2022, 8:eadd2337. https://doi.org/10.1126/sciadv.add2337

 

80. Fucosylation Promotes Cytolytic Function and Accumulation of NK Cells in B Cell Lymphoma. Tong, X.; Ru, Y.; Fu, J.; Wang, Y.; Zhu, J.; Ding, Y.; Lv, F.; Yang, M.; Wei, X.; Liu, C.; Liu, X.; Lei, L.; Wu, X.; Guo, L.; Xu, Y.; Li, J.; Wu, P.*; Gong, H.*; Chen, J.*; Wu, D.* Front. Immunol. 2022, 13:904693. https://doi.org/10.3389/fimmu.2022.904693

 

79. Chain-Growth Sulfur(VI) Fluoride Exchange Polycondensation: Molecular Weight Control and Synthesis of Degradable Polysulfates. Kim, H.; Zhao, J.; Bae, J.; Klivansky, L.M.; Dailing, E.A.; Liu, Y.; Cappiello, J.R.; Sharpless, K.B.; Wu, P. ACS Cent. Sci. 2021, 7, 1919. https://doi.org/10.1021/acscentsci.1c01015

 

78. Modulation of Siglec-7 Signaling via in situ Created High-affinity cis-Ligands. Hong, S.; Yu, C.; Shi, Y.; Wang, P.; Chapla, D.G.; Rodrigues, E.; Moremen, K.W.; Paulson, J.C.; Macauley, M.S.; Wu, P. ACS Cent. Sci. 2021, 7, 1338.

https://doi.org/10.1021/acscentsci.1c00064

 

77. SuFExable Polymers with Helical Structures Derived from Thionyl Tetrafluoride (SOF4). Li, S.; Li, G.; Gao, B.; Pujari, S. P.; Chen, X.; Kim, H.; Zhou, F.; Klivansky, L. M.; Liu, Y.; Driss, H.; Impey, R. E.; Soares da Costa, T. P.; Lu, J.; Wu, P.; Zuilhof, H.; Moses, J. E.; Sharpless, K. B. Nat. Chem. 2021 13, 858. https://doi.org/10.1038/s41557-021-00726-x

 

76. Click Chemistry Expedited Radiosynthesis: Sulfur [18F]fluoride Exchange of Aryl Fluorosulfates. 

Zheng, Q.; Xu, H.; Wang, H.; Du, W.; Wang, N.; Xiong, H.; Gu, Y.; Noodleman, L.; Yang, G.; Sharpless, K. B.; Wu, P. J. Am. Chem. Soc. 2021, 143, 3753. https://doi.org/10.1021/jacs.0c09306

 

75. Glycoengineering of NK cells with Glycan Ligands of CD22 and Selectins for B-cell Lymphoma

Therapy.  Hong, S.; Yu, C.; Wang, P.; Shi, Y.; Cheng, B.; Chen, M.; Chapla, D.G..; Reigh, N.; Narimatsu, Y.; Chen, X.; Clausen, H.; Moremen, K.W.; Macauley, M.S.; Paulson, J.C.; Wu, P. Angew. Chem. Int. Ed. 2021, 60, 3603.

https://doi.org/10.1002/anie.202005934

 

74. Detecting Tumor Antigen-specific T cells via Interaction Dependent Fucosyl-biotinylation. Liu, Z.; Li, J.P.; Chen, M.; Wu, M.; Shi, Y.; Li, W.; Teijaro, J.R.; Wu, P. Cell, 2020, 183, 1117. https://doi.org/10.1016/j.cell.2020.09.048

 

73. hFUT1-based Live Cell Assay to Profile α1-2-fucosides enhanced Influenza A Virus Infection. Hong, S.; Grandy, G.; Yu, C.; Chapla, D. G.; Reigh, N.; Yang, Y.; Izumori, K.; Moremen, K. W.; Xie, J.; Wu, P. ACS Chem. Biol. 2020, 15, 819.

https://doi.org/10.1021/acschembio.9b00869

 

72. In Situ Fucosylation of the Wnt Co-receptor LRP6 Increases Its Endocytosis and Reduces Wnt/β-Catenin Signaling Hong, S.; Feng, L.; Jiang, H.; Hou, X.; Guo, P.; Marlow, F. L.; Stanley, P.; Wu, P. Cell. Chem. Biol. 2020, 27, 1140. https://doi.org/10.1016/j.chembiol.2020.06.015

  • Cell Chem. Biol. Preview: For Wnt Signaling, Fucosylation of LRP6 Is a Bitter Pill, 2020, 27, 1114.

 

71. Direct Visualization of Live Zebrafish Glycan via Single-step Metabolic Labeling with Fluorophore-tagged Nucleotide Sugars. Hong, S.; Sahai-Hernandez, P.; Chapla, D.G.; Moremen, K.W.; Traver, D.; Wu, P. Angew. Chem. Int. Ed. 2019, 58, 14327. https://doi.org/10.1002/anie.201907410

 

70. CHAPTER 1 New Polymers From SuFEx Click Chemistry: Syntheses and Perspectives. Xu, L.; Wu, P.; Dong, J.    Synthetic Polymer Chemistry: Innovations and Outlook: The Royal Society of Chemistry. 2019. p. 1-31.

https://doi.org/10.1039/9781788016469-00001

 

69. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF4)-Derived Connective Hubs for Bioconjugation to DNA and Proteins. Liu. F.; Wang, H.; Li, S.; Bare, GAL.; Chen, X.; Wang, C.; Moses, J.E.; Wu, P.; Sharpless, K.B. Angew. Chem. Int. Ed. 2019, 58, 8029. https://doi.org/10.1002/anie.201902489

 

68. Stage-Specific and Selective Delivery of Caged Azidosugars into the Intracellular Parasite Toxoplasma gondii by Using an Esterase-Ester Pair Technique. Tomita, T.; Wang, H.; Wu, P.; Weiss, L.M. mSphere. 2019, 4, pii: e00142-19.

https://doi.org/10.1128/msphere.00142-19

 

67. Bacterial Glycosyltransferase-mediated Cell-surface Chemoenzymatic Glycan Modification. Hong, S.; Shi, Y.; Wu, N. C.; Grande, G.; Douthit, L.; Wang, H.; Zhou, W.; Sharpless, K. B.; Wilson, I. A.; Xie, J.; Wu, P. Nat. Commun. 2019, 10, 1799.

https://doi.org/10.1038/s41467-019-09608-w

 

66. Novel Approaches to Access Arylfluorosulfates and Sulfamoyl Fluorides Based on Sulfur (VI) Fluoride Exchange. Liu, Z.; Meng, G.; Guo, T.; Dong, J.; Wu, P. Curr. Protoc. Chem. Bio. 2019, 11, e64. https://doi.org/10.1002/cpch.64

 

65. Cryo-EM structure of L-fucokinase/GDP-fucose pyrophosphorylase (FKP) in Bacteroides fragilis. Liu, Y.; Hu, H.; Wang, J.; Zhou, Q.; Wu, P,; Yan, N.; Wang, H.-W.; Wu, J.-W.; Sun, L. Protein Cell. 2019, 10, 365. https://doi.org/10.1007/s13238-018-0576-x

 

64. A Single-step Enzymatic Glycoengineering for the Construction of Antibody-cell Conjugates. Li, J.; Chen, M.; Liu, Z.; Zhang, L.; Felding, B.H.; Moremen K.W.; Lauvau, G.; Abadier, M.; Ley, K.; Wu, P. ACS Cent. Sci. 2018, 4, 1633.

https://doi.org/10.1021/acscentsci.8b00552

  • Highlighted in C&En News: "Sugar-transferring enzyme adds antibody to cell surface", 2018, 96, 8.

 

63. Antibody Selection Using Clonal Co-cultivation of E. coli and Eukaryotic Cells in Mini-ecosystems. Zheng, T.;  Xie, J. Yang, Z. Tao, P.;  Shi, B.; Douthit, L.; Wu, P.; Lerner, R. A. Proc. Natl. Acad. Sci. USA. 2018, 115, E6145.

https://doi.org/10.1073/pnas.1806718115

 

62. Sialyltransferase-based Chemoenzymatic Histology for the Detection of N- and O-glycans.

Aguilar Lopez, A.; Meng, L.; Hou, X.; Li, W.; Moremen, K.W.; Wu, P. Bioconj. Chem. 2018, 29, 1231.

https://doi.org/10.1021/acs.bioconjchem.8b00021

 

61. Cell-Based Glycan Arrays for Probing Glycan–Glycan Binding Protein Interactions. Briard, J.G., Jiang, H., Moremen, K.W., Macauley, M.S., Wu, P. Nat. Commun. 2018, 9, 880. https://doi.org/10.1038/s41467-018-03245-5

  • Highlighted in C&En News: "Glycan arrays created with live cells", 2018, 96, 14.

 

60. SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization. Liu, Z.; Li, J.; Li, S.; Sharpless, K. B.; Wu, P. J. Am. Chem. Soc. 2018, 140, 2919. https://doi.org/10.1021/jacs.7b12788

 

59. Engineered glycocalyx regulates stem cell proliferation in murine crypt organoids. Rouhanifard, S.H.; Aguilar Lopez, A.; Meng, L.; Moremen, K.W.; Wu, P. Cell. Chem. Bio. 2018, 25, 439. https://doi.org/10.1016/j.chembiol.2018.01.010

 

58. Modulating cell-surface receptor signaling and ion channel functions by in situ glycan editing. Jiang, H.; Meng, L.; Lopez-Aguilar, A.; Gao, Z.; Liu, Y.; Tian, X.; Yu, G.; Ovryn, B.; Moremen, K.W.; Wu, P. Angew. Chem. Int. Ed. 2018, 57, 967. 

https://doi.org/10.1002/anie.201706535

 

57. Inhibition of Delta-induced Notch Signaling Using Fucose Analogs. Schneider, M.; Kumar, V.; Nordstrøm, L.; Feng, L.; Takeuchi, H.; Stanley, P.; Wu, P.*; Haltiwanger, R. S.* Nat. Chem. Biol. 2018, 14, 65. (*co-corresponding authors). 

https://doi.org/10.1038/nchembio.2520

 

56. Profiling of Protein O-GlcNAcylation in Murine CD8+ Effector- and Memory-like T Cells. Lopez Aguilar, A.; Gao, Y.; Hou, X.; Lauvau, G.; Yates, J.R.; Wu, P. ACS Chem. Biol. 2017, 12, 3031. https://doi.org/10.1021/acschembio.7b00869

 

55. A Chemoenzymatic Histology Method for O-GlcNAc Detection. Lopez Aguilar, A.; Hou, X.; Wen, L.; Wang, P.G.; Wu, P. Chembiochem. 2017, 18, 2416. https://doi.org/10.1002/cbic.201700515

 

54. Visualizing Glycans on Single Cells and Tissues. Ovryn, B.; Hong, S.; Li, J.; Wu, P. Curr. Opin. Chem. Biol. 2017, 39, 39. 

https://doi.org/10.1016/j.cbpa.2017.04.018

 

53. Bifluoride-catalyzed Sulfur(VI) Fluoride Exchange (SuFEx) Reaction for the Synthesis of Polysulfates and Polysulfonates. Gao, B.; Zhang, L.; Zheng, Q.; Zhou, F.; Klivansky, L. M.; Lu, J.; Liu, Y.; Dong J.*; Wu, P.*; Sharpless,  K. B.* Nat. Chem. 2017, 9, 1083. (*co-corresponding authors). https://doi.org/10.1038/nchem.2796

  • Highlighted in C&En News: “New catalytic route to polysulfates and polysulfonates”. 2017, 96, 6.

 

52. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride-Amine Adducts. Wang, H.; Zhou, F.; Ren, G.; Zheng, Q.; Chen, H.; Gao, B.; Klivansky, L.; Liu, Y.; Wu, B.; Xu, Q.; Lu, J.; Sharpless, K.B.; Wu, P. Angew. Chem. Int. Ed. 2017, 56, 11203. https://doi.org/10.1002/anie.201701160

 

51. Palladium-Catalyzed Fluorosulfonylvinylation of Organic lodides.  Zha, G.F.; Zheng, Q.; Leng, J.; Wu, P.; Qin, H.L.; Sharpless, K.B.  Angew. Chem. Int. Ed. 2017, 56, 4849. https://doi.org/10.1002/anie.201701162

 

50. Tools for Studying Glycans: Recent Advances in Chemoenzymatic Glycan Labeling.

Lopez Aguilar, A.; Briard, J.G.; Yang, L.; Ovryn, B.; Macauley, M.S.; Wu, P. ACS Chem. Biol. 2017, 12, 611. 

https://doi.org/10.1021/acschembio.6b01089

 

49. Multidimensional SuFEx Click Chemistry: Sequential Sulfur(VI) Fluoride Exchange Connections of Diverse Modules Launched From An SOF4 Hub. Li, S.; Wu, P.; Moses, J.E.; Sharpless, K.B. Angew. Chem. Int. Ed. 2017, 56, 2903. 

https://doi.org/10.1002/anie.201611048

 

48. A Heck-Matsuda Process for the Synthesis of β-Arylethenesulfonyl Fluorides: Selectively Addressable Bis-electrophiles for SuFEx Click Chemistry. Qin, H. L.; Zheng, Q.; Bare, G. A.; Wu, P.*; Sharpless, K.B.*  Angew. Chem. Int. Ed. 2016, 55, 14155. (*co-corresponding authors). https://doi.org/10.1002/anie.201608807

 

47. Chemical Glycobiology. Boons, G. J.; Wu, P. Glycobiology 2016, 26, 788. https://doi.org/10.1093/glycob/cww072

 

46. Controlling Sulfuryl-Transfer Biology. Cook, I.; Wang, T.; Wang, W.; Kopp, F.; Wu, P.; Leyh, T. Cell Chem. Biol. 2016, 23, 579. https://doi.org/10.1016/j.chembiol.2016.04.009

​

45. Synthesis of Sulfotyrosine-Containing Peptides by Incorporating Fluorosulfated Tyrosine Using an FMOC Solid-phase Strategy. Chen, W.; Dong, J.; Li, S.; Liu, Y.; Wang, Y.; Poon, L.; Wu, P.; Sharpless, K.B.; Kelly, J. W. Angew. Chem. Int. Ed. 2016, 55, 1835. https://doi.org/10.1002/anie.201509016

​

44. Chemoselective Synthesis of Polysubstituted Pyridines from Heteroaryl Fluorosulfates. Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. Eur. J. 2016, 22, 5692. https://doi.org/10.1002/chem.201600167

 

43. Discovery of Autophagy Inhibitors with Anti-proliferative Activity in Lung and Pancreatic Cancer Cells. Nordstrøm, L.; Sironi, J.; Aranda, E.; Maisonet, J.; Perez-Soler, R.; Wu, P.; Schwartz, E. ACS Med. Chem. Lett. 2015, 6, 134. 

https://doi.org/10.1021/ml500348p

 

42. Tracking Surface Glycans on Live Cancer Cells with Single Molecule Sensitivity. Jiang, H.; English, B.; Hazan, R.; Wu, P.*; Ovryn, B.* Angew. Chem. Int. Ed. 2015, 54, 1765-1769. (*co-corresponding authors). 

https://doi.org/10.1002/anie.201407976

  • Highlighted in C&En News: "Single Glycoproteins Caught In Motion", 2015, 93, 21.

 

41. CHoMP: A Chemoenzymatic Histology Method for Glycan Detection Using ‘Clickable’ Probes. Rouhanifard, S. H.; López-Aguilar, A.; Wu, P. ChemBioChem, 2014, 15, 2667. https://doi.org/10.1002/cbic.201402433

 

40. Negative Feedback Regulator of Wnt Signaling in via N-linked Fucosylation in Zebrafish. Feng, L.; Jiang, H.; Wu, P.*; Marlow, F.L.* Dev. Biol. 2014, 395, 268. (*co-corresponding authors). https://doi.org/10.1016/j.ydbio.2014.09.010

 

39. Biocompatible Click Chemistry Enabled Compartment-Specific pH Measurement Inside E. coli. Yang, M.; Jalloh, A.; Wei, W.; Zhao, J.*; Wu. P*; Chen, P. R.* Nat. Commun. 2014, 5, 4981. (*co-corresponding authors). 

https://doi.org/10.1038/ncomms5981

  • Highlighted in C&En News 2014, 92, 30.

 

38. Monitoring Dynamic Glycosylation In vivo Using Super-sensitive Click Chemistry. Jiang, H.; Zheng, T.; Lopez Aguilar, A.; Kopp, F.; Marlow, F. L.; Wu, P. Bioconj. Chem. 2014, 25, 698. https://doi.org/10.1021/bc400502d

 

37. In vivo Chemistry. Bertozzi, C. R.; Wu, P. Curr. Opin. Chem, Biol. 2013, 17, 717. 

https://doi.org/10.1016/j.cbpa.2013.10.012

 

36. Single-stranded DNA as a Cleavable Linker for Bioorthogonal Click Chemistry-based Proteomics. Zheng, T.; Jiang, H.; Wu, P. Bioconjugate Chem. 2013, 24, 859. https://doi.org/10.1021/bc400093x

 

35. Chemical Probing of Glycans in Cells and Organisms. Rouhanifard, S. H.; Nordstrom, L.; Zheng, T.; Wu, P. Chem. Soc. Rev. 2013, 42, 4284. https://doi.org/10.1039/C2CS35416K

 

34. Detection and Isolation of Dendritic Cells Using Lewis X-functionalized Magnetic Nanoparticles.

Rouhanifard, S. H.; Xie, R.; Zhang, G.; Sun, X.; Chen, X.; Wu, P. Biomacromolecules.  2012, 13, 3039. 

https://doi.org/10.1021/bm3007506

 

33. Click Triazoles for Bioconjugation. Zheng, T.; Rouhanifard S. H.; Jalloh A. S.; Wu P. Top. Heterocycl. Chem. 2012, 28, 163. https://doi.org/10.1007/7081_2011_72

 

32. Metabolomic Analysis of Patient Plasma Yields Evidence of Plant-Like α-Linolenic Acid Metabolism in Plasmodium falciparum. Lakshmanan, V.; Rhee, K. Y.; Wang, W.; Yu, Y.; Khafizov, K.; Fiser, A.; Wu, P.; Ndir, O.; Mboup, S.; Ndiaye, D.; Daily, J. P.  J. Infect. Dis.  2012, 206, 238. https://doi.org/10.1093/infdis/jis339

 

31. Imaging the Glycome in Living Systems.  Li, B.; Mock, F.; Wu, P. Methods Enzymol.  2012, 505, 401. 

https://doi.org/10.1016/B978-0-12-388448-0.00029-2

 

30. Sulfated Ligands for the Copper(I)-catalyzed Azide-Alkyne Cycloaddition. Wang, W.; Hong, S.; Tran, A.; Jiang, H.; Triano, R.; Liu, Y. Chen, X.; Wu, P. Chem. Asian J.  The “Click Chemistry 10 Years” Special Issue. 2011, 10, 2796. 

https://doi.org/10.1002/asia.201100385

 

29. Imaging Glycans in Zebrafish Embryos by Metabolic Labeling and Bioorthogonal Click Chemistry. Jiang, H.; Feng, L.; Soriano del Amo, D.; Seidel, R. D.  III; Marlow, F.; Wu, P. J. Vis Exp. 2011, 52, 2686. https://www.jove.com/video/2686

 

28. Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study. Webler-Besanceney, C.; Jiang, H.; Zheng, T.; Feng, L.; Soriano Del Amo, D.; Wang, W.; Klivansky, L.; Liu, Y.; Marlow, F.; Wu, P. Angew. Chem. Int. Ed. 2011, 50, 8051. https://doi.org/10.1002/anie.201101817

 

27. Metabolic Labeling of Fucosylated Glycoproteins in Bacteroidales species. Webler-Besanceney, C.; Jiang, H.; Wang, W.; Baughn, A.; Wu, P. Bioorg. Med. Chem. Lett.  2011, 21, 4989. https://doi.org/10.1016/j.bmcl.2011.05.038

  •   The special issue in honor of Prof. Carolyn Bertozzi on the occasion of her receiving Tetrahedron Young Investigator Award.  

 

26. Metabolic Labeling of Fucosylated Glycans in Developing Zebrafish. Dehnert, K. W.; Beahm, B. J.; Huynh, T. T.; Baskin, J. M.; Laughlin, S. T.; Wang, W.;  Wu, P.;  Amacher, S. L.; Bertozzi, C. R. ACS Chem. Bio. 2011, 6, 547.

https://doi.org/10.1021/cb100284d

 

25. Tracking N-acetyllactosamine on Cell Surface Glycans in Vivo. Zheng, T.; Jiang, H.; Gros, M., Soriano del Amo, D.; Sundaram, S.; Lauvau, G.; Marlow, F.; Liu, Y., Stanley, P.; Wu, P. Angew. Chem. Int. Ed. 2011, 50, 4113. 

https://doi.org/10.1002/anie.201100265

 

24. Biocompatible Copper(I) Catalysts for in Vivo Imaging of Glycans. Soriano del Amo, D.; Wang, W.; Jiang, H.; Besanseney, C.; Yan, A, C.; Levy, M.; Liu, Y.; Marlow, F. Wu, P.  J. Am. Chem. Soc. 2010, 132, 16893. https://doi.org/10.1021/ja106553e 

  • Highlighted in C&En News: “Imaging Molecules on Living Cells”, 2010, 88, 37. 

 

23. Chemoenzymatic Synthesis of the Sialyl Lewis X Glycan and its Derivatives. Soriano Del Amo,  D.; Wang, W.; Besanceney, C.; Zheng, T.; He, Y.; Gerwe, B.; Seidel, R. D. III, Wu, P. Carbohydr. Res. 2010, 345, 1107.

https://doi.org/10.1016/j.carres.2010.03.032

 

22. Chemoenzymatic Synthesis of GDP-L-fucose and the Lewis X Glycan Derivatives. Wang, W.;  Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; Soriano del Amo,  D.;  Seidel, R. D.  III; Wu, P. Proc. Natl. Acad. Sci. USA.  2009, 106, 16096.

https://doi.org/10.1073/pnas.0908248106

 

21. Metabolic Labeling of Sialic Acids in Living Animals with Alkynyl Sugars. Chang, P.; Chen, X.; Smyrniotis, C.; Hu, T.; Bertozzi, C. R.; Wu, P. Angew. Chem. Int. Ed. 2009, 48, 4030. https://doi.org/10.1002/anie.200806319

 

From Work Conducted Prior to Joining Albert Einstein College of Medicine 

 

20. Site-Specific Chemical Protein Conjugation Using Genetically Encoded Aldehyde Tags. 

Rabuka, D.; Rush, J. S.; deHart, G. W.; Wu, P.; Bertozzi, C. R.  Nat. Protoc.  2012, 7, 1052. 

https://doi.org/10.1038/nprot.2012.045

 

19. Targeted Metabolic Labeling of Yeast N-glycans with Unnatural Sugars.  Breidenbach, M. A.; Gallagher, J. E. G.; King, D. S.; Smart, B. P.; Wu, P.; Bertozzi, C. R. Proc. Natl. Acad. Sci. USA. 2010, 107, 3988. 

https://doi.org/10.1073/pnas.0911247107

 

18. Rapid and Selective Detection of Fatty Acylated Proteins Using Omega-Alkynyl-Fatty Acids and Click Chemistry. Yap, M. C.; Kostiuk, M. A.; Martin, D. D.; Perinpanayagam, M. A.; Hak, P. C.; Siddam, A.; Majjigapu, J. R.; Rajaiah, G.; Keller, B. O.; Prescher, J. A.; Wu, P.; Bertozzi, C. R.; Falck, J. R.; Berthiaume, L. G. J. Lipid Res. 2010, 51, 1566. 

https://doi.org/10.1194/jlr.D002790

 

17. Glycopeptide Preferring Polypeptide- GalNAc Transferase-10 (ppGalNAc T10), Involved in Mucin type-O-glycosylation, Has a Unique GalNAc-O-Ser/Thr Binding Site in Its Catalytic Domain Not Found in ppGalNAc T1 or T2. Perrine, C. L.; Ganguli, A.; Wu, P.;  Bertozzi, C. R.; Fritz, T.A.; Raman, J.; Tabak, L. A.; Gerken, T. A. J. Biol. Chem. 2009, 284, 20387. https://doi.org/10.1074/jbc.M109.017236

 

16. Site-specific Chemical Modification of Recombinant Proteins Produced in Mammalian Cells Using the Genetically Encoded Aldehyde Tag. Wu, P.; Shui, W.; Carlson, B.; Hu, N.; Rabuka, D.; Lee, J.; Bertozzi, C. R. Proc. Natl. Acad. Sci. USA.  2009, 106, 3000. https://doi.org/10.1073/pnas.0807820106

 

15. Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells. Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C. R. J. Am. Chem. Soc. 2009, 131, 890. 

https://doi.org/10.1021/ja807334b

 

14. Biocompatible Carbon Nanotubes Generated by Functionalization with Glycodendrimers. Wu, P.; Chen, X.; Hu, N.; Tam. U. C.; Blixt, O.; Zettl, A.; Bertozzi, C. R. Angew. Chem. Int. Ed. 2008, 47, 5022. 

https://doi.org/10.1002/anie.200705363

 

13. Role of Architecture and Molecular Weight in the Formation of Tailor-made Ultrathin Multilayers Using Dendritic Macromolecules and Click Chemistry.  Vestberg, R.; Malkoch, M.; Kade, M.; Wu, P.; Fokin, V. V.; Sharpless, K. B.;  Drockenmuller, E.; Hawker, C. J. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2835. https://doi.org/10.1002/pola.22178

 

12. Catalytic Dipolar Cycloaddition of Azides and Alkynes: Reactivity and Applications. Wu, P.; Fokin, V. V. Aldrich. Acta. 2007, 40, 7. https://doi.org/10.1002/3527607862.ch12

 

11. Osmium Catalyzed Olefin Dihydroxylation and Amino Hydroxylation with Second-Cycle Ligand. Wu, P.; Hilgraf, R.; Fokin, V. V.  Adv. Synth. Catal. 2006, 348, 1079. https://doi.org/10.1002/adsc.200505252

 

10. Aziridines and Epoxides in Click Chemistry. Fokin, V. V.; Wu, P. in Aziridines and Epoxides in Organic Synthesis, Yudin, A. K. Ed., Wiley-VCH, New York, 2006, 443. https://doi.org/10.1002/3527607862.ch12

 

9. Multivalent, Bifunctional Dendrimers Prepared by Click Chemistry. Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn, M. G.; Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Chem. Comm. 2005, 46, 5775. 

https://doi.org/10.1039/B512021G

 

8. Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes.  Sharpless, W. D.; Wu, P.; Hansen, T.; Lindberg, J. G. J. Chem. Educ. 2005, 82, 1833.

https://doi.org/10.1021/ed082p1833

 

7. One Pot Copper(I)-Catalyzed Syntheses of 3,5-Disubstituted Isoxazoles. Hansen, T.; Wu, P.; Fokin, V. V. J. Org. Chem. 2005, 70, 7761. https://doi.org/10.1021/jo050163b

 

6. Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry. Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V. V. Macromolecules. 2005, 38, 3663. 

https://doi.org/10.1021/ma047657f

 

5. Efficiency and Fidelity in a Click Chemistry Route to Triazole Dendrimers via the Cu(I)-Catalyzed Ligation of Azides and Alkynes. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem. Int. Ed. 2004, 43, 3928. https://doi.org/10.1002/anie.200454078 

  • Highlighted in C&En News 2004, 28, 5 and 2004, 51, 53.

 

4. New d4 Dihydrides of Ru(IV) and Os(IV) with π-donor Ligands: M(H)2(chelate)(PiPr3)2 with Chelate = ortho-XYC6H4 with X, Y = O, NR; R = H or CH3 Ferrando-Miguel, G.; Wu, P.; Huffman, J. C.; Caulton, K. G.  New J. Chem. 2005, 29, 193. 

https://doi.org/10.1039/B411487F

 

3. Cu(I) and Cu(II) Complexes of a Pyridine-based Pincer Ligand. Vedernikov, A. N.; Wu, P.; Huffman, J. C.; Caulton, K. G. Inorg. Chim. Acta. 2002, 300, 103. https://doi.org/10.1016/S0020-1693(01)00825-8

 

2. Intramolecular N-H Insertion of α-Diazocarbonyls Catalyzed by Cu(acac)2: An Efficient Route to Derivatives of 3-Oxoazetidines, 3-Oxopyrrolidines and 3-Oxopiperidines. Wang, J.; Hou, Y.; Wu, P. J. Chem. Soc. Perkin Trans.1, 1999, 16, 2277. https://doi.org/10.1039/A903722E

 

1. Stereoselective Synthesis of Enantiomerically Pure 4,5-Disubstituted Pyrrolidinones from β-Amino Acids. Wang, J.; Hou, Y.; Wu, P.; Qu, Z.; Chan, A. S. C. Tetrahedron Asymm. 1999, 10, 4553. https://doi.org/10.1016/S0957-4166(99)00530-3

10550 North Torrey Pines Road, La Jolla, CA 92037

MB 208-210

858-784-7626

© 2025 by The Wu Lab

bottom of page